skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Sinha, Debajyoti"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Tensor regression analysis is finding vast emerging applications in a variety of clinical settings, including neuroimaging, genomics, and dental medicine. The motivation for this paper is a study of periodontal disease (PD) with an order-3 tensor response: multiple biomarkers measured at prespecified tooth–sites within each tooth, for each participant. A careful investigation would reveal considerable skewness in the responses, in addition to response missingness. To mitigate the shortcomings of existing analysis tools, we propose a new Bayesian tensor response regression method that facilitates interpretation of covariate effects on both marginal and joint distributions of highly skewed tensor responses, and accommodates missing-at-random responses under a closure property of our tensor model. Furthermore, we present a prudent evaluation of the overall covariate effects while identifying their possible variations on only a sparse subset of the tensor components. Our method promises Markov chain Monte Carlo (MCMC) tools that are readily implementable. We illustrate substantial advantages of our proposal over existing methods via simulation studies and application to a real data set derived from a clinical study of PD. The R package BSTN available in GitHub implements our model. 
    more » « less
  2. Like many other clinical and economic studies, each subject of our motivating transplant study is at risk of recurrent events of non-fatal tissue rejections as well as the terminating event of death due to total graft rejection. For such studies, our model and associated Bayesian analysis aim for some practical advantages over competing methods. Our semiparametric latent-class-based joint model has coherent interpretation of the covariate (including race and gender) effects on all functions and model quantities that are relevant for understanding the effects of covariates on future event trajectories. Our fully Bayesian method for estimation and prediction uses a complete specification of the prior process of the baseline functions. We also derive a practical and theoretically justifiable partial likelihood-based semiparametric Bayesian approach to deal with the analysis when there is a lack of prior information about baseline functions. Our model and method can accommodate fixed as well as time-varying covariates. Our Markov Chain Monte Carlo tools for both Bayesian methods are implementable via publicly available software. Our Bayesian analysis of transplant study and simulation study demonstrate practical advantages and improved performance of our approach. 
    more » « less
  3. Abstract This paper demonstrates the advantages of sharing information about unknown features of covariates across multiple model components in various nonparametric regression problems including multivariate, heteroscedastic, and semicontinuous responses. In this paper, we present a methodology which allows for information to be shared nonparametrically across various model components using Bayesian sum‐of‐tree models. Our simulation results demonstrate that sharing of information across related model components is often very beneficial, particularly in sparse high‐dimensional problems in which variable selection must be conducted. We illustrate our methodology by analyzing medical expenditure data from the Medical Expenditure Panel Survey (MEPS). To facilitate the Bayesian nonparametric regression analysis, we develop two novel models for analyzing the MEPS data using Bayesian additive regression trees—a heteroskedastic log‐normal hurdle model with a “shrink‐toward‐homoskedasticity” prior and a gamma hurdle model. 
    more » « less